## Scaling Technique in Tempered Stable Processes and Its Application to Financial Data Analysis

# Liuming Wang<sup>†</sup>, Kirill Klimov<sup>†</sup>, Minseob Kim<sup>\*</sup>, Yiming Chen<sup>\*</sup>, Dorian Zhou<sup>\*</sup>, Young Shin Kim<sup>†,‡</sup>

<sup>†</sup> Applied mathematics and Statistics, Stony Brook University
 \* Ward Melville High School
 \* R.C. Murphy Junior High School
 ‡ Faculty Supervisor. College of Business, Stony Brook University

February 23, 2020

https://aaronga.shinyapps.io/TSFit\_AA/ https://aaronga.shinyapps.io/NTSDistFigureOut/

### Normal Tempered Stable Distribution

Let  $\alpha \in (0,2)$ ,  $\theta, \gamma > 0$ , and  $\mu, \beta \in \mathbb{R}$ . Let  $\mathcal{T}$  be a positive random variable whose characteristic function  $\phi_{\mathcal{T}}$  is equal to

$$\phi_{\mathcal{T}}(u) = \exp\left(-\frac{2\theta^{1-\frac{\alpha}{2}}}{\alpha}\left(\left(\theta - iu\right)^{\frac{\alpha}{2}} - \theta^{\frac{\alpha}{2}}\right)\right).$$
(1)

The random variable  $\mathcal{T}$  is referred to as *Tempered Stable Subordinator*. The *normal tempered stable* (NTS) random variable X with parameters ( $\alpha$ ,  $\theta$ ,  $\beta$ ,  $\gamma$ ,  $\mu$ ) is defined as

$$X = \mu - \beta + \beta T + \gamma \sqrt{T} W, \qquad (2)$$

where  $W \sim N(0, 1)$  is independent of  $\mathcal{T}$ , and we denote  $X \sim \text{NTS}(\alpha, \theta, \beta, \gamma, \mu)$ . The characteristic function (Ch.F) of  $\epsilon$  is given by

$$\begin{split} \phi_{\text{NTS}}(u) &= E[e^{iuX}] \\ &= \exp\left((\mu - \beta)iu - \frac{2\theta^{1-\frac{\alpha}{2}}}{\alpha}\left(\left(\theta - i\beta u + \frac{\gamma^2 u^2}{2}\right)^{\frac{\alpha}{2}} - \theta^{\frac{\alpha}{2}}\right)\right). \end{split}$$

### Normal Tempered Stable Distribution

The first four moments of *X* are as follows:

• Mean: 
$$E[X] = \mu$$

• Variance: 
$$\operatorname{var}(X) = \gamma^2 + \beta^2 \left(\frac{2-\alpha}{2\theta}\right)$$

• skewness: 
$$S(X) = \frac{\beta (2 - \alpha) (6 \gamma^2 \theta - \alpha \beta^2 + 4\beta^2)}{\sqrt{2\theta} (2 \gamma^2 \theta - \alpha \beta^2 + 2\beta^2)^{3/2}}$$

• Excess kurtosis: 
$$K(X) = \frac{(2-\alpha) \left(\alpha^2 \beta^4 - 10 \alpha \beta^4 - 12 \alpha \beta^2 \gamma^2 \theta + 24 \beta^4 + 48 \beta^2 \gamma^2 \theta + 12 \gamma^4 \theta^2\right)}{2 \theta \left(2 \gamma^2 \theta - \alpha \beta^2 + 2\beta^2\right)^2}$$

### Normal Tempered Stable Process

The NTS distribution is purely non-Gaussian infinitely divisible, we can define a pure jump Lévy process  $(X_t)_{t\geq 0}$  such that  $X_1 \sim \text{NTS}(\alpha, \theta, \beta, \gamma, m)$ . In this case, we say that  $(X_t)_{t\geq 0}$  is NTS process with parameters  $(\alpha, \theta, \beta, \gamma, m)$ . The ch.F of  $X_t$  is

$$\phi_{X_t}(u) = \exp(t \log(\phi_{NTS}(u; \alpha, \theta, \beta, \gamma, \mu))).$$



Figure: NTS Process is more volatile than Brownian Motion ( $\mu = -0.01, \sigma = 1$ )

URECA

### S&P 500 return distribution

- Fattails
- Leptokurtic distributed
- Skewed left



#### NTS fit \_ S&P 500 index daily return (2009-2019)

URECA

If  $\mu = 0$  and  $\gamma = \sqrt{1 - \beta^2 \left(\frac{2-\alpha}{2\theta}\right)}$  with  $|\beta| < \sqrt{\frac{2\theta}{2-\alpha}}$  then  $\epsilon \sim \text{NTS}(\alpha, \theta, \beta, \gamma, \mu)$ has zero mean and unit variance. Put  $\beta = B\sqrt{\frac{2\theta}{2-\alpha}}$  for  $B \in (-1, 1)$ , then  $|\beta| < \sqrt{\frac{2\theta}{2-\alpha}}$  and  $\gamma = \sqrt{1 - B^2}$ . Then the Ch.F of  $\epsilon$  equals to

$$\phi_{stdNTS}(u; \alpha, \theta; B) = \phi_{\epsilon}(u) = \phi_{\epsilon}(u) = E[e^{iu\epsilon}]$$
$$= \exp\left(-iuB\sqrt{\frac{2\theta}{2-\alpha}} - \frac{2\theta^{1-\frac{\alpha}{2}}}{\alpha}\left(\left(\theta - iuB\sqrt{\frac{2\theta}{2-\alpha}} + \frac{u^{2}}{2}\left(1-B^{2}\right)\right)^{\frac{\alpha}{2}} - \theta^{\frac{\alpha}{2}}\right)\right)$$

In this case  $\epsilon$  is referred to as the *standard NTS* random variable with parameters  $(\alpha, \theta; B)$ , and we denote  $\epsilon \sim \text{stdNTS}(\alpha, \theta; B)$ .

For  $\epsilon \sim \text{stdNTS}(\alpha, \theta; B)$ , we have

$$S(\epsilon) = \sqrt{\frac{2-\alpha}{2\theta}} B\left(3(1-B^2) + \frac{4-\alpha}{2-\alpha}B^2\right)$$
(3)

and

$$K(\epsilon) = \frac{(2-\alpha)}{2\theta} \left( (\alpha-4)(\alpha-6) \left(\frac{B^2}{2-\alpha}\right)^2 + \left( (24-6\alpha) \left(\frac{B^2}{2-\alpha}\right) + 3(1-B^2) \right) \right)$$
(4)

Normal Distribution Case: General normal distribution is obtained by the standard normal distribution.

$$\mathbf{X} = \boldsymbol{\mu} + \boldsymbol{\sigma}\boldsymbol{\epsilon}$$

where  $X \sim N(\mu, \sigma)$  and  $\epsilon \sim N(0, 1)$ . And we have

$$F_X(x) = F_\epsilon\left(rac{x-\mu}{\sigma}
ight), \ f_X(x) = rac{1}{\sigma}f_\epsilon\left(rac{x-\mu}{\sigma}
ight)$$

where  $F_X$  and  $F_{\epsilon}$  are CDF of X and  $\epsilon$  respectively, and  $f_X$  and  $f_{\epsilon}$  are PDF X and of  $\epsilon$ , respectively.

(

Brownian Motion (BM) Case: Let  $\{W_t\}_{t\geq 0}$  be the BM, and consider an arithmetic BM  $\{X_t\}_{t\geq 0}$  with

$$dX_t = \mu dt + \sigma dW_t.$$

Then we have

$$X_{\Delta t} = X_{t+\Delta t} - X_{\Delta t} = \mu \Delta t + \sigma W_{\Delta t} = \mu \Delta t + \sigma \epsilon \sqrt{\Delta t}.$$

Hence

$$F_{X_{\Delta t}}(x) = F_{\epsilon}\left(\frac{x - \mu \Delta t}{\sigma \sqrt{\Delta t}}\right), \ f_{X_{\Delta t}}(x) = \frac{1}{\sigma \sqrt{\Delta t}} f_{\epsilon}\left(\frac{x - \mu \Delta t}{\sigma \sqrt{\Delta t}}\right)$$

Lemma: Let  $(X_t)_{t\geq 0}$  be a NTS process with parameters  $(\alpha, \theta, \beta, \gamma, m)$ , and  $X_{\Delta t} = X_{t+\Delta t} - X_t$ . Let  $s = \sqrt{\gamma^2 + \beta^2 \left(\frac{2-\alpha}{2\theta}\right)}$ . Suppose  $\xi \sim \text{stdNTS}(\bar{\alpha}, \bar{\theta}, \bar{\beta})$  where  $\bar{\alpha} = \alpha, \bar{\theta} = \theta \Delta t, \bar{\beta} = \beta \sqrt{\Delta t} / s$ . Then we have  $X_{\Delta t} \stackrel{\text{d}}{=} \mu + \sigma \xi$  where  $\sigma = s \sqrt{\Delta t}$ , and  $\mu = m \Delta t$ . Apply the Lemma, we have

$$F_{X_{\Delta t}}(x) = F_{\xi}\left(\frac{x-\mu}{\sigma}\right)$$

where  $F_{X_{\Delta t}}$  and  $F_{\xi}$  are the CDF of  $X_{\Delta t}$  and  $\xi$ , respectively. Moreover, we have

$$f_{X_{\Delta t}}(x) = \frac{1}{\sigma} f_{\xi}\left(\frac{x-\mu}{\sigma}\right)$$

where  $f_{X_{\Delta t}}$  and  $f_{\xi}$  are the PDF of  $X_{\Delta t}$  and  $\xi$ , respectively.

### Scaling Technique - PDF



PDF's of NTS distribution with parameters  $\alpha = 0.5$ ,  $\theta = 10$ ,  $\beta = -3$ ,  $\gamma = 0.1$ , m = 0, and  $\Delta t = 1/250$  (one business day). The scaling technique is not used in the left plate while it is used in the right plate.

### Scaling Technique - CDF



CDF's of NTS distribution with parameters  $\alpha = 0.2$ ,  $\theta = 1$ ,  $\beta = -3$ ,  $\gamma = 0.1$ , m = 0, and  $\Delta t = 0.05$ . The scaling technique is not used in the left plate while it is used in the right plate.

### Scaling Technique - Intraday Trading Data Fit



NTS fit - IBM intraday return (01/14/2020)

IBM Intraday trading data fit. Estimated parameters  $\alpha = 0.3767$ ,  $\theta = 0.00783$ ,  $\beta = 1.307 \cdot 10^{-7}$ ,  $\gamma = 1.2675 \cdot 10^{-4}$ ,  $m = -1.6109 \cdot 10^{-7}$ Goodness of fit test: KS statistic = 0.15 (p-value = 0.2105)

# Scaling Technique - Sample Path Generation



Fit normal parameters ( $\mu$ ,  $\sigma$ ) to the daily log-return of 30 stocks in DJIA members.

| Ticker | $\mu$  | $\sigma$ | KS     | p-value | Ticker | $\mu$  | $\sigma$ | KS     | p-value |
|--------|--------|----------|--------|---------|--------|--------|----------|--------|---------|
| v      | 0.0010 | 0.0160   | 0.0683 | 0.00%   | CSCO   | 0.0005 | 0.0165   | 0.0936 | 0.00%   |
| MMM    | 0.0005 | 0.0131   | 0.0885 | 0.00%   | AXP    | 0.0007 | 0.0196   | 0.1164 | 0.00%   |
| AAPL   | 0.0012 | 0.0167   | 0.0658 | 0.00%   | BA     | 0.0008 | 0.0167   | 0.0607 | 0.01%   |
| CAT    | 0.0005 | 0.0191   | 0.0741 | 0.00%   | CVX    | 0.0003 | 0.0138   | 0.0589 | 0.01%   |
| KO     | 0.0005 | 0.0099   | 0.0622 | 0.00%   | DD     | 0.0005 | 0.0217   | 0.0831 | 0.00%   |
| XOM    | 0.0001 | 0.0122   | 0.0564 | 0.03%   | GS     | 0.0004 | 0.0194   | 0.0795 | 0.00%   |
| HD     | 0.0009 | 0.0137   | 0.0672 | 0.00%   | IBM    | 0.0003 | 0.0129   | 0.0752 | 0.00%   |
| INTC   | 0.0006 | 0.0163   | 0.0535 | 0.07%   | JNJ    | 0.0004 | 0.0097   | 0.0723 | 0.00%   |
| JPM    | 0.0006 | 0.0213   | 0.1113 | 0.00%   | MCD    | 0.0005 | 0.0103   | 0.0593 | 0.01%   |
| MRK    | 0.0005 | 0.0133   | 0.0661 | 0.00%   | MSFT   | 0.0008 | 0.0153   | 0.0712 | 0.00%   |
| NKE    | 0.0009 | 0.0157   | 0.0665 | 0.00%   | PFE    | 0.0004 | 0.0125   | 0.0651 | 0.00%   |
| PG     | 0.0004 | 0.0100   | 0.0701 | 0.00%   | TRV    | 0.0005 | 0.0129   | 0.0741 | 0.00%   |
| UNH    | 0.0009 | 0.0168   | 0.0698 | 0.00%   | UTX    | 0.0005 | 0.0132   | 0.0723 | 0.00%   |
| VZ     | 0.0004 | 0.0111   | 0.0455 | 0.64%   | WMT    | 0.0004 | 0.0112   | 0.0687 | 0.00%   |
| WBA    | 0.0004 | 0.0163   | 0.0701 | 0.00%   | DIS    | 0.0007 | 0.0147   | 0.0734 | 0.00%   |